3 research outputs found

    Multi-Camera Platform for Panoramic Real-Time HDR Video Construction and Rendering

    Get PDF
    High dynamic range (HDR) images are usually obtained by capturing several images of the scene at different exposures. Previous HDR video techniques adopted the same principle by stacking HDR frames in time domain. We designed a new multi-camera platform which is able to construct and render HDR panoramic video in real-time, with 1024 × 256 resolution and a frame rate of 25 fps. We exploit the overlapping fields-of-view between the cameras with different exposures to create an HDR radiance map. We propose a method for HDR frame reconstruction which merges the previous HDR imaging techniques with the algorithms for panorama reconstruction. The developed FPGA-based processing system is able to reconstruct the HDR frame using the proposed method and tone map the resulting image using a hardware-adapted global operator. The measured throughput of the system is 245 MB/s, which is, up to our knowledge, among the fastest HDR video processing systems

    An Insect Eye Inspired Miniaturized Multi-Camera System for Endoscopic Imaging

    No full text
    In thiswork,we present aminiaturized high definition vision system inspired by insect eyes, with a distributed illumination method, which can work in dark environments for proximity imaging applications such as endoscopy. Our approach is based on modeling biological systems with off-the-shelf miniaturized cameras combined with digital circuit design for real time image processing. We built a 5 mm radius hemispherical compound eye, imaging a 180◦ × 180◦ degrees field of view while providingmore than 1.1 megapixels (emulated ommatidias) as real-time video with an inter-ommatidial angle Δφ = 0.5◦ at 18 mm radial distance. We made an FPGA implementation of the image processing system which is capable of generating 25 fps video with 1080 × 1080 pixel resolution at a 120 MHz processing clock frequency. When compared to similar size insect eye mimicking systems in literature, the system proposed in this paper features 1000× resolution increase. To the best of our knowledge, this is the first time that a compound eye with built-in illumination idea is reported. We are offering our miniaturized imaging system for endoscopic applications like colonoscopy or laparoscopic surgery where there is a need for large field of view high definition imagery. For that purpose we tested our systeminside a human colonmodel. We also present the resulting images and videos from the human colon model in this paper
    corecore